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Artificial Intelligence 

Background



Definitions

“Intelligence: The ability to learn and solve problems”

Webster’s Dictionary

“Artificial intelligence (AI) is the intelligence exhibited

by machines or software’

Wikipedia



Definitions

“The study and design of intelligent agents, where an

intelligent agent is a system that perceives its environment

and takes actions that maximize its chances of success.”

Russel and Norvig AI book

“Just as the Industrial Revolution freed up a lot of humanity

from physical drudgery, I think AI has the potential to free

up humanity from a lot of the mental drudgery.”

Andrew Ng



What is AI?

Thinking rationally

 mental process – use computational models

 use maths and logic

 Codify “right thinking” with logic

Acting rationally 

 intelligent agents

 A rational agent is one that acts so as to achieve the 

best outcome, or when there is uncertainty, the best 

expected outcome.



What is AI?

Views of AI fall into four categories:

Thinking humanly Thinking rationally 

Acting humanly Acting rationally 

The textbook advocates "acting rationally“



What is AI?

Thinking humanly 

 computers to ‘think’, machines with minds

 cognitive science / approach

 how do humans think?

Acting humanly

 get computers to do things that humans are currently 
better at doing

 Flying – planes can, but do not mimic a bird

 Major components of AI: knowledge, reasoning, 
language, understanding, learningTuring test (1950)

 .



Acting humanly: Turing Test

 Turing (1950) "Computing machinery and intelligence":

 "Can machines think?"  "Can machines behave intelligently?"

 Operational test for intelligent behavior: the Imitation Game

 Predicted that by 2000, a machine might have a 30% chance of fooling 
a lay person for 5 minutes

 Anticipated all major arguments against AI in following 50 years



The Turing Test
(Can Machine think? A. M. Turing, 1950)

 Requires:

 Natural language

 Knowledge representation

 Automated reasoning

 Machine learning 

 (vision, robotics) for full test

http://www.loebner.net/Prizef/TuringArticle.html


Artificial Intelligence 

History (pre-LLMs)



History of AI



History of AI



Artificial Intelligence 

Application (pre-LLMs)



Applications of AI
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Applications of AI



Applications of AI



State of the Art



What is Artificial Intelligence 

and what are agents?



Agents

 An agent is anything that can be viewed as

perceiving its environment through sensors and

 acting upon that environment through actuators



Agents

 An agent

1. perceives

2. thinks 

3. acts



Agents

 A cycle or loop

1. sense the world

3. acting

2. thinking? deciding?



Vacuum-cleaner world

 Percepts: location and contents, e.g., [A,Dirty]

 Actions: Left, Right, Suck, NoOp

 Agent function: mapping from percepts to actions.



PEAS

PEAS: 

 Performance measure, 

 Environment, 

 Actuators, 

 Sensors



PEAS

 automated taxi driver:

Performance measure: 

Safety, fast, legal, comfortable trip, maximize profits

Environment: 

Roads, other traffic, pedestrians, customers

Actuators: 

Steering wheel, accelerator, brake, signal, horn

Sensors: 

Cameras, sonar, speedometer, GPS, odometer, engine 
sensors, keyboard, other



PEAS

Agent: automatic vacuum cleaner (Roomba)

 Performance measure: cleanness, distance, security, 

efficiency, battery

 Environment: room, objects in room

 Actuators: wheels, brushes, etc.

 Sensors: dirt, cliff, bump, infrared wall, and camera

http://www.irobot.co.uk/Home-Robots/Vacuuming



Environment types

Deterministic (vs. stochastic): 

 Deterministic - The next state of the environment is 
completely determined by the current state and the action 
executed by the agent. 

 Strategic - If the environment is deterministic except for the 
actions of other agents

 Stochastic - The next state of the environment is not 
determined solely by the current state and the action 
executed by the agent. 

 Non-deterministic

 Probabilistic



Environment types

Episodic (sequential): 

 The agent's experience is divided into atomic "episodes" 

 each episode consists of the agent perceiving and then 
performing a single action, and 

 the choice of action in each episode depends only on the 
episode itself.



Environment types

Static (vs. dynamic): 

 The environment is unchanged while an agent is 

deliberating.

 The environment is semidynamic if the environment 

itself does not change with the passage of time but the 

agent's performance score does



Environment types

Discrete (vs. continuous): 

 A limited number of distinct, clearly defined 

percepts and actions.

 e.g. checkers/draughts v self-driven car

Single agent (vs. multi-agent): 

 An agent operating by itself in an environment.



Environment types

Randomness Changing Environments



Agent types

Four basic types in order of increasing generality:

 Reflex agents (simple)

 Model-based reflex agents

 Goal-based agents

 Utility-based agents

also 

 Learning agents



Reflex agents

 action based on current state

 simple / limited

 fully-observed environment only

 current percept

Percept Action

[A, clean] Right

[A, dirty] Suck

[B, clean] Left

[B, dirty] Suck



Goal-based agents

 agents needs more information - goal

 affects actions

 considers future – what will happen if I do …?

 knowledge represented & modified



Utility-based agents

 maximizes performance

 utility function

 this is the performance measure

 can deal with uncertainty



What are search agents?



Formulate the problem

Initial state: the state in which the agent starts

States: All states reachable from the initial state by any 

sequence of actions 

(State space)

Actions: possible actions available to the agent. At a state s, 

Actions(s) returns the set of actions that can be executed in 

state s.

(Action space)

e.g. go right or left in the maze



Examples



The 8-puzzle

states locations of tiles 

actions move blank left, right, up, down 

goal test goal state (given)

path cost 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]



The 8-puzzle



search example



Space

State space: a physical configuration

Search space: an abstract configuration represented by a search 

tree or graph of possible solutions.

Example: 8-puzzle

state space – all possible boards

search space – an abstract tree (or graph), nodes and edges



Space

Search tree: models the sequence of actions

 Root: initial state

 Branches: actions

 Nodes: results from actions. A node has: parent, children, 

depth, path cost, associated state in the state space.

Expand: A function that given a node, creates all children nodes



Space regions

The search space is divided into three regions:

1. Explored (a.k.a. Closed List, Visited Set)

2. Frontier (a.k.a. Open List, the Fringe)

3. Unexplored



Space regions

The essence of search is 

 moving nodes from regions (3) to (2) to (1), and 

 deciding the order of such moves.

In the following we adopt the following color coding: 

 green nodes are unexplored

 grey nodes are explored, 

 white nodes are the frontier 



Tree search example



Tree search example



Tree search example



Search strategies

 order of node expansion

 Strategies are evaluated by:

 completeness: does it always find a solution if one exists?

 time complexity: number of nodes generated

 space complexity: maximum number of nodes in memory

 optimality: does it always find a least-cost solution?



Search strategies

 Time and space complexity are measured in terms of 

 b: maximum branching factor of the search tree

 d: depth of the least-cost solution

 m: maximum depth of the state space (may be ∞)

if domain knowledge – informed

else uninformed



Uninformed search strategies

 Breadth-first search

 Depth-first search

 Depth-limited search

 Iterative deepening search

 Uniform-cost search



Uninformed search strategies

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node

3. Depth-limited search (DLS): Depth first with depth limit

4. Iterative-deepening (IDS): DLS with increasing limit

5. Uniform-cost search (UCS): Expand least cost node



Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

fringe is a FIFO queue, i.e., new successors go 

at end
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Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

fringe is a FIFO queue, i.e., new successors go 

at end



Properties of breadth-first search

 Complete Yes (if b is finite)

 Time 1+ b + b2 + b3 +… + bd + b(bd-1) = O(bd+1)

 Space O(bd+1) 

(keeps every node in memory)

 Optimal Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Why use it (if exponential time & space)?
 shallow problems, NLP



Properties of breadth-first search



Depth-first search

 Expand deepest unexpanded node

 Implementation:

fringe = LIFO queue, i.e., put successors at 

front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front



Properties of depth-first search

 Complete No: 

fails in infinite-depth spaces, spaces with loops

 if modify to avoid repeated states along path

 yes - complete in finite spaces

 Time O(bm): terrible if m is much larger than d

 but if solutions are dense, may be much faster than breadth-first

 Space O(bm), i.e., linear space complexity

only store a single path (root-node)

 Optima No

m = 

maximum 

depth



Properties of depth-first search



Iterative deepening search l =0



Iterative deepening search l =1



Iterative deepening search l =2



Iterative deepening search l =3



Properties of iterative deepening search

 Complete Yes

 Time (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

 Space O(bd)

 Optimal Yes, if step cost = 1



Example

 157 + 110 = 267

 81 + 80 + 90 = 251



Uniform-cost search

Complete

Yes, if solution has a finite cost

Time

O(b(C*/ε)) where C* is the cost of the optimal solution, ε is the max cost 
of an action

Space

# of nodes with g ≤ cost of optimal solution, O(b(C*/ ε))

Optimal

Yes – nodes expanded in increasing order of g(n)



Summary of algorithms



What are informed search 

agents?



Informed search

Use domain knowledge!

 Are we getting close to the goal?

 Use a heuristic function that estimates how close a state is to 

the goal

 A heuristic does NOT have to be perfect!

 Example of strategies:

1. Greedy best-first search

2. A* search

3. IDA* (alternative type of A* search)



Romania with step costs in km



Greedy best-first search

 Evaluation function f(n) = h(n) (heuristic)

 = estimate of cost from n to goal

 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to be 

closest to goal

 Example: there are 3 possible cities, which city is the closest, in 

km, to the goal (destination city)



Greedy best-first search example



Greedy best-first search example



Greedy best-first search example



Greedy best-first search example



Properties of greedy best-first search

 Complete? No – can get stuck in loops 

 Time? O(bm), but a good heuristic can give dramatic 

improvement

 Space? O(bm) -- keeps all nodes in memory

 Optimal? No



A* search

Minimize the total estimated solution cost

Combines:

 g(n): cost to reach node n

 h(n): cost to get from n to the goal

 f(n) = g(n)+h(n)

 f(n) is the estimated cost of the cheapest solution through n



A* search

 Idea: avoid expanding paths that are already expensive

 Evaluation function f(n) = g(n) + h(n)

calculate total cost = cost so far + estimated cost to goal



A* search example



A* search example



A* search example



A* search example



A* search example



A* search example



A* search

An admissible heuristic never 

overestimates the cost to reach the goal, 

i.e., it is optimistic



A* search



A* search

 Complete? Yes

 Time? exponential

 Space? keeps every node in memory - problem

 Optimal? Yes!





Games & 

Satisfying Constraint Problems



Adversarial Search

• Adversarial search problems = games

• They occur in multi-agent competitive 

environments

• There is an opponent we can’t control planning 

again us!



Adversarial Search

• Game vs. search: 

 optimal solution is not a sequence of actions

 but a strategy (policy) 

 If opponent does a, agent does b, else

 if opponent does c, agent does d, etc.

 Tedious and fragile if hard-coded (i.e., rules)

We use 2 ingredients:

 search problems & heuristic evaluation



Type of Games

non-deterministic / 

stochastic games



Adversarial Search



Game tree 

2-player

Max & Min deterministic

take turns



Minimax

 Perfect play for deterministic games

 Idea: choose the move to position with highest minimax

value 

 = best achievable payoff against best play

 E.g., 2-ply game:



α-β pruning example



α-β pruning example



α-β pruning example



α-β pruning example



α-β pruning example

The values (X) are irrelevant as the max of (3, <=2, 2) is 3. The branches that 

stem from these two nodes will not affect the outcome therefore can be pruned.



calculations



Stochastic Games

 Includes chance - a random element 

 e.g., throwing a die

 Include chance nodes.

Backgammon: 

 old board game combining skills and chance.

 The goal is that each player tries to move all of his pieces off

the board before his opponent does.



Chance Games 



Chance Games 

min = 4 min = 6 min = 2 min = 1

chance H or T = 

4 or 6

chance H or T = 

1 or 2

max chooses 

probability 5 or 1.5, 

max chooses left tree



CSP Definition

 A constraint satisfaction problem consists of three elements:

– A set of variables, X = {X1,X2, · · ·Xn}

– A set of domains for each variable: D = {D1,D2, · · ·Dn}

– A set of constraints C that specify allowable combinations of values.

 Solving the CSP: finding the assignment(s) that satisfy all constraints.

 Concepts: problem formalization, backtracking search, arc consistency, etc.

 We call a solution, a consistent assignment.



Example: Map-Coloring

 Variables WA, NT, Q, NSW, V, SA, T

 Domains Di = {red,green,blue}

 Constraints: adjacent regions must have 
different colors

 e.g., WA ≠ NT, or (WA,NT) in 
{(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}



Example: Map-Coloring

Solutions are complete and consistent assignments, e.g., 

WA = red, NT = green,Q = red,NSW = green,V = red,SA = 

blue,T = green



Constraint graph

 Binary CSP: each constraint relates two variables

 Constraint graph: nodes are variables, arcs are constraints



Backtracking example



Backtracking example



Backtracking example



Backtracking example



Most constrained variable

 Most constrained variable:

choose the variable with the fewest legal values

 a.k.a. minimum remaining values (MRV) heuristic

pick the hardest



Least constraining value

 Given a variable, choose the least constraining value:

 the one that rules out the fewest values in the 

remaining variables

 Combining these heuristics makes 1000 queens feasible

pick the ones that are likely to work



Forward checking

 Idea: 

 Keep track of remaining legal values for unassigned 

variables

 Terminate search when any variable has no legal values



Forward checking



Forward checking



Forward checking

 Now Southern Australia has no options remaining –

therefore this is not a possible solution



Constraint propagation

 Forward checking propagates information from assigned to 

unassigned variables, but doesn't provide early detection 

for all failures:

 NT and SA cannot both be blue!

 Constraint propagation repeatedly enforces constraints 

locally



Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y
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Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked



Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward checking

 Can be run as a preprocessor or after each assignment



Complexity

Example:

Assume n = 80, d = 2.

• Assume we can decompose into 4 subproblems with c = 20.

• Assume processing at 10 million nodes per second.

• Without decomposition of the problem we need:

280 = 1.2*1024  - take 3.83 million years!

• With decomposition of the problem we need:

4 * 220 = 4.2*106- reduced to 0.4 seconds





What is 

Artificial Intelligence now?

we need to understand

Natural Language Processing



AI journey

When we think of Artificial Intelligence we think of ChatGPT 

(Large Language Models called LLMs)

but, where did they come from?



AI & NLP
what was AI/NLP research like 25 years ago?



Why? What is NLP?

 AI subfield 

 ‘demanding’ area’ for research

 results notoriously difficult

 “can’t teach it to students as they would fail the course”

Natural Language Processing (NLP) deals with the 

research of how to apply computational techniques 

on human language



Text Processing Speech Processing Other NLP areas

• Intent Recognition: Understanding the 

purpose or request in user queries

• Dialog Management: Structuring back-and-

forth conversation flows in a logical way. 

• Parsing: Dividing text into meaningful units, like 

words or phrases, and structuring them to 

understand grammar and syntax

• Semantic Analysis: Determining the meaning of 

words in context (e.g. sentiment analysis)

• Named Entity Recognition (NER): Identifying proper 

nouns like names of people, places, dates

• Text Generation: Creating new text based on input, 

such as summaries or articles (e.g., GPT models)

NATURAL LANGUAGE PROCESSING

• Speech Recognition: Converting spoken 

language to text 

• Speech Synthesis: Converting text back to 

human-sounding speech (TTS)

• Information Retrieval 

• Information Extraction

• Machine Translation

• Question Answering Systems

• Co-reference Resolution



Research Lab – research included

 information overload

 overload of information online – information extraction

 pattern recognition

 text-based (e.g. finding patterns in text)

 image-based (e.g. snake skin)

 anti-spam & content-based filtering 
 spam was a problem

 inappropriate email (e.g. pornography)

 speech

 speech markup language (XML)

 Text-to-Speech systems (SAPI)

 translation to sign language 

 other research included – NLP (WSD),Thai NLP, Computer Vision (VR 
gloves)

According to a study by Websense in the early 2000s, up to 30% of workplace 

internet use was unrelated to work tasks, with some portion of this time spent on 

adult sites

2005 American Management Association survey reported that 76% of companies 

monitored workers' website visits



and Language?
it’s difficult



NLP / AI 10 years ago

What is a conversation agent? 

HAL 9000 (from 2001: A Space Odyssey)

Dave: Open the pod bay doors, Hal.

HAL: I’m sorry Dave, I’m afraid I can’t do that

Virtual assistants:

• Siri, Apple

• Cortana, Microsoft

• M, Facebook

• Alexa, Amazon



I made her duck

1. I cooked [animal-duck] for her to eat

2. I cooked [animal-duck] belonging to her

3. I created the [plastic-duck] she owns

4. I caused her to quickly lower her head or body

5. I waved my magic wand and turned her into a [animal-duck] 



Probabilistic Language Models

assign a probability to a sentence

 Machine Translation:

 P(high winds tonight) > P(large winds tonight)

 Spelling Correction

 The office is about fifteen minuets from my house

 P(about fifteen minutes from) > P(about fifteen minuets from)

 Speech Recognition

 P(I saw a van) >> P(eyes awe of an)



Probabilistic Language Models

probability of an upcoming word:

P(w5|w1,w2,w3,w4)

compute the probability of a sentence or sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)



Chain Rule of Probability

P(“water is so transparent”) =

P(is|water) × P(so|water is) × P(transparent|water is so)

we could count and divide?  Too many possible sentences

Markov Assumption

P(the | its water is so transparent that) similar to

P(the | transparent that)



How many?

2 words = bigram

3 words = trigram

4 words = 4-gram

5 words = 5-gram

called n-grams

but we have long distance dependencies



SMT - LM

 English 500,000+ word dictionaries

 probability of next word  - too 
computationally expensive

 use beam search

finite set 

of possible 

terms

finite set 

of possible 

terms

P(w5|w1,w2,w3,w4)

finite set 

of possible 

terms

finite set 

of possible 

terms

finite set 

of possible 

terms



but it has all changed!



the neural network 

revolution



Neural Networks

 We have known about neural 
networks for a long time

 It is said the first Artificial Neural 
Networks were developed in the 
1940s

 1983-1985 Geoffrey Hinton used 
tools from statistical physics to 
create the Boltzmann machine

 Even Recurrent neural networks 
(RNN) (used for NMT) was written 
about in 1997 [1] [1] Castaño, Asunción; Casacuberta, Francisco (1997). A connectionist approach to machine 

translation. 5th European Conference on Speech Communication and Technology (Eurospeech

1997). Rhodes, Greece. pp. 91–94. doi:10.21437/Eurospeech.1997-50.

But now we have the 

data and the 

computing power



Thai-English Machine Translation

is a good example of what has happened to AI and NLP



the story

Would Google Translation stay number one?

Who could develop the first successful NMT system? 

TPUs and how long to converge

NMT = Neural Machine Translation

TPU = Tensor Processing Unit



the facts

• Google developed the first successful NMT system 

• in 2016 Google launched its NMT-based Google Translate for several language pairs.

• Google did leverage extensive computational resources, including GPUs initially, and 

later integrated its proprietary TPUs to speed up inference and training times.

• However, there isn’t strong evidence that the initial NMT system specifically took three 

months to converge using TPUs. 

• Research in Canada: The University of Montreal, led by Yoshua Bengio and contributions 

from Kyunghyun Cho and others, was among the pioneering teams in neural machine 

translation. 

• They helped develop early NMT models and contributed to the broader research that 

Google later built upon.



the (small) AI world



Ilya Sutskever



Ilya Sutskever

In 2012, Sutskever spent about two months as a postdoc with Andrew Ng at Stanford University. He then returned 

to the University of Toronto and joined Hinton's new research company DNNResearch, a spinoff of Hinton's 
research group.

In 2013, Google acquired DNNResearch and hired 

Sutskever as a research scientist at Google Brain.

At Google Brain, Sutskever worked with Oriol Vinyals and 

Quoc Viet Le to create the sequence-to-sequence 

learning algorithm, and worked on TensorFlow. 

He is also one of the AlphaGo paper's many co-authors.

At the end of 2015, Sutskever left Google to become 

cofounder and chief scientist of the newly founded 

organization OpenAI.

Sutskever is considered to have played a key role in the 

development of ChatGPT.



the ai world

early 2010’s

 studied machine learning online with Andrew Ng

 studied neural networks online with Geoffrey Hinton

now

 retrieval augmented generation (RAG)

 AI safety and ethical considerations



progress



progress

iRobot Roomba (2002) The first commercially successful robot vacuum

https://vacuumwars.com/history-of-the-robot-vacuum-cleaner/ 

robot vacuum cleaners

22 years ago - not very good

22 years later - not very good



progress

 speech recognition (NLP in personal assistant)

 except Scottish accent

 but we still use keyboards & mice

 pattern recognition

 object recognition – nearly at 100% world objects



ARTIFICIAL INTELLIGENCE

The adoption of deep 

learning 

techniques, led to 

significant advancements 

in NLP tasks such as 

machine translation, 

sentiment analysis, and 

speech recognition. 

Deep learning models 

outperformed traditional 

methods, marking a shift 

towards more complex 

and capable AI systems

The introduction of the 

transformer (2017) 

allowed for more 

efficient processing of 

language data. 

Leading to breakthroughs 

in translation and text 

generation tasks. 

Transformers became the 

backbone for subsequent 

large language models 

(LLMs).

The emergence of 

LLMs transformed 

user interaction 

with AI.

The surge in generative 

AI applications has led 

to new creative 

possibilities in content 

generation. 

This boom has also 

raised ethical concerns 

regarding 

misinformation and 

copyright issues, 

prompting discussions 

about responsible AI 

use and regulation.

The widespread 

integration of AI 

technologies into 

consumer products 

and services—such as 

virtual assistants, 

customer service bots, 

and content 

recommendation 

systems—has made AI 

a ubiquitous part of 

daily life. 

This has increased 

public awareness and 

demand for further 

advancements and 

improvements.

early 2010s late 2010s 2020s



Statistical Neural Attention Transformers
• analyzed bilingual 

text corpora 

• identify patterns and 

rules for translation 

• breaks down 

sentences 

• translating these 

units 

• based on 

probabilities 

• from training data 

• dependent on the 

training data quality 

and quantity

• deep learning 

models 

• used vast amounts 

of data

• handling long-

range 

dependencies 

• more natural-

sounding results 

• improving fluency 

and coherence

• focus on specific 

parts of the input

• when generating 

each word output 

• improving accuracy 

for longer sentences

• has led to substantial 

improvements in 

translation quality,

• particularly for 

complex sentence 

structures

• replaced recurrent 

neural networks

• with self-attention 

mechanisms allowing 

for parallelization

• significantly 

increasing efficiency

• Transformers have 

excelled in handling 

diverse languages 

and contexts, 

• making them the 

current state-of-the-

art.

MACHINE TRANSLATION



Statistical Neural Attention Transformers

LANGUAGE MODELS

• Statistical Language 

Models operate on 

probabilistic 

principles, 

• analyzing large 

corpora of text 

• learn the likelihood of 

word sequences using 

n-grams. 

• struggle with long-

range dependencies

• resulting in less 

coherent and 

accurate outputs

• Neural Language 

Models created 

better language 

representation

• models could 

capture more 

complex patterns in 

data. 

• They improved 

fluency and 

contextual 

understanding 

• but still had 

scalability and 

language diversity 

problems.

• allowed models to 

focus on relevant 

parts of the input 

sequence 

• when generating 

outputs. 

• improved how models 

handled context. 

• enhanced 

performance in tasks 

requiring 

understanding of 

longer contexts

• leading to more 

coherent outputs

• revolutionized 

language modelling

• enabled the training 

of much larger 

models (LLMs) 

• with billions of 

parameters, 

• leading to 

unprecedented 

improvements in 

various NLP tasks

• such as translation, 

summarization, and 

question-answering. 



17 months

required an emergency 

re-write

of the NMT section

the speed of progress



and this week



Neural Networks
How have neural networks 

improved NLP?

Sentiment Analysis

Recurrent Neural Networks (RNNs) and Transformers have helped 

sentiment analysis evolve from simple word-based analysis to understanding 

nuanced opinions in text.

Models like BERT and RoBERTa capture context more effectively, 

distinguishing subtle sentiment in complex reviews or social media posts.

01

02

03

04

Question Answering (QA)

Neural networks have enabled models to read passages and provide 

answers to questions with high accuracy.

BERT, GPT, and other transformer-based models excel at QA tasks, 

leveraging their ability to understand and generate responses based on 

specific questions.

Text Summarization

Neural models generate concise summaries by identifying key 

information from larger documents.

Sequence-to-sequence (seq2seq) models and attention mechanisms

are particularly effective, enabling both extractive and abstractive 

summarization approaches

Chatbots and Conversational Agents

Neural networks are behind more natural and coherent conversational 

agents.

Dialog systems like those in GPT and ChatGPT use transformers to 

manage context over long interactions, improving the relevance of 

responses in real-time conversations.



Neural Networks
How have neural networks 

improved NLP?

Named Entity Recognition (NER)

Neural networks have improved the accuracy of identifying names, dates, 

organizations, and other entities in text.

Bi-directional LSTM-CRF models, often combined with transformer 

embeddings, have set new benchmarks in extracting these details 

accurately.

05

06

07

08

Text Generation and Completion

Models like GPT-3 can generate realistic text based on prompts, making 

significant strides in applications like automated writing, content 

generation, and code completion.

These models understand context well enough to complete or expand on 

text in a way that appears human-written. 

Speech Recognition and Synthesis

Neural networks, particularly convolutional neural networks (CNNs)

and transformers, have improved both transcription accuracy and 

natural-sounding speech synthesis.

Systems like WaveNet and Tacotron produce human-like voices, 

critical for virtual assistants and accessibility tools.

Grammar and Style Correction

Models like T5 and GPT can detect and suggest corrections for 

grammar and style errors, often with human-like precision.

These models help in developing tools like Grammarly and Microsoft 

Editor, making grammar checks context-aware and more accurate.



so, what changed?

• from corpus-based research to Neural Networks

1. vast amounts of text (the internet)

2. more computational power

Neural Networks can converge

so advanced machine learning

without human input (features & weights)
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