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Artificial Intelligence
Background




Definitions

“Intelligence: The ability to learn and solve problems”

Webster’s Dictionary

“Artificial intelligence (Al) is the intelligence exhibited
by machines or software’
Wikipedia




Definitions

“The study and design of intelligent agents, where an
intelligent agent is a system that perceives its environment
and takes actions that maximize its chances of success.”

Russel and Norvig Al book

“Just as the Industrial Revolution freed up a lot of humanity
from physical drudgery, | think Al has the potential to free

up humanity from a lot of the mental drudgery.”




What is Al?

Thinking rationally

» mental process - use computational models
» use maths and logic

» Codify “right thinking” with logic

Acting rationally

» intelligent agents

» Arational agent is one that acts so as to achieve the
best outcome, or when there is uncertainty, the best
expected outcome.




What is Al?

Views of Al fall into four categories:

Thinking humanly

Thinking rationally

Acting hurmanty

Acting rationatty

The textbook advocates "acting rationally“




What is Al?

Thinking humanly
» computers to ‘think’, machines with minds

» cognitive science / approach
» how do humans think?
Acting humanly

» get computers to do things that humans are currently
better at doing

» Flying - planes can, but do not mimic a bird

» Major components of Al: knowledge, reasoning,
language, understanding, learningTuring test (1950)
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Acting humanly: Turing Test

Turing (1950) "Computing machinery and intelligence":
"Can machines think?" - "Can machines behave intelligently?”
Operational test for intelligent behavior: the Imitation Game

Predicted that by 2000, a machine might have a 30% chance of fooling
a lay person for 5 minutes

» Anticipated all major arguments against Al in following 50 years

HUMAN
INTERROGATOR




The Turing Test

(Can Machine think? A. M. Turing, 1950)

INTERRCGATOR

» Requires:

» Natural language
» Knowledge representation

» Automated reasoning

» Machine learning

. . . Figure 1.1 The Turing test.
» (vision, robotics) for full test



http://www.loebner.net/Prizef/TuringArticle.html

Artificial Intelligence
History (pre-LLMs)




History of Al

e 1940-1950: Gestation of Al
— McCulloch & Pitts: Boolean circuit to model of brain
— Turing’s Computing Machinery and Intelligence
http://www.turingarchive.org/browse.php/B/9

e 1950-1970: Early enthusiasm, great expectations
— Early Al programs, Samuel’s checkers program
— Birth of AI @ Dartmouth meeting 1956.
— Check out the MIT video "The thinking Machine” on
youtube
https://www.youtube.com/watch?v=aygSMgK3BEM

e 1970-1990: Knowledge-based Al
— EXxpert systems, Al becomes an industry
— Al winter




History of Al

e 1990-present: Scientific approaches

— Neural Networks: le retour

— T he emergence of intelligent agents

— Al becomes ‘scientific’, use of probability to model uncer-
tainty

— Al Spring!

— The availability of very large datasets.
* Data will drive future discoveries and alleviate the com-
plexity in Al.
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Artificial Intelligence
Application (pre-LLMs)




Applications of Al

Speech recognition

e Virtual assistants: Siri (Apple), i 8
Echo (Amazon), Google Now, Cor- [y
o cookies and you split them
tana (MICI’OSOft). evenly among O friends. How

many cookies does each
person get? See, it doesn't

e “They"” helps get things done: send make sense. And Cookie

: : Monster is sad that there are
an email, make an appointment, no cookies. And you are sad
; that you have no friends.
find a restaurant, tell you the

weather and more.

indeterminate

e L everage deep neural networks to
handle speech recognition and
natural language understanding.




Applications of Al

Handwriting recognition (check, zipcode)




Applications of Al

Robotics: Awesome robots today! NAO, ASIMO, and more!

Credit: By Momotarou2012, via Wikimedia Commons.

e




Applications of Al

Recommendation systems (collaborative filtering)
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Applications of Al

Search engines
Google  Machine ieaming e
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Applications of Al

Face recognition

FACE
RECOGNITION

: J NN ! . S
S I {
T '

PROCESSING
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Applications of Al

Face detection

Viola-Jones method.




Applications of Al

Detection of breast cancer in mammography images




Applications of Al

Chess (1997): Kasparov vs. IBM Deep Blue

1 g -

p—-
-

(Left) Copyright 2007, S.M.S.1., Inc. - Owen Williams, The Kasparov Agency, via Wikimedia

Commons (Right) By James the photographer, via Wikimedia Commons

Powerful search algorithms!

i



Applications of Al

Jeopardy! (2011): Humans vs. IBM Watson

By Rosemaryetoufee (Own work), via Wikimedia Commons

Natural Language Understanding and information extraction!




Applications of Al

Go (2016): Lee Sedol versus Google AlphaGo

A

:U+ AlphaGo

(Left) By LG Electronics, via Wikimedia Commons (Right) By Google DeepMind, via

Wikimedia Commons

Deep Learning, reinforcement learning, and search algorithms!

P




Applications of Al

Autonomous driving

By User Spaceape on en.wikipedia, via Wikimedia Commons

e DARPA Grand Challenge
— 2005: 132 miles
— 2007: Urban challenge
— 2009: Google self-driving car




State of the Art

Speech recognition
Autonomous planning and
scheduling

Financial forecasting

Game playing, video games
Spam fighting

LLogistics planning

Robotics (household, surgery,
navigation)

Machine translation
Information extraction

VLSI layout

Automatic assembly
Sentiment analysis

Fraud detection
Recommendation systems
Web search engines
Autonomous cars

Energy optimization
Question answering systems
Social network analysis
Medical diagnosis, imaging
Route finding

Traveling salesperson
Protein design

Document summarization
Transportation/scheduling
Computer animation

e




What is Artificial Intelligence
and what are agents?




Agents

» An agent is anything that can be viewed as
» perceiving its environment through sensors and
» acting upon that environment through actuators




Agents

SENSOTrS
» An agent
1. perceives percepts
2. thinks

3. acts actions __/ ,

~

&

/

actuators




Agents

» A cycle or loop

1. sense the world

2. thinking? deciding?

3. acting




Vacuum-cleaner world

A/% E

2R R

» Percepts: location and contents, e.g., [A,Dirty]
» Actions: Left, Right, Suck, NoOp
» Agent function: mapping from percepts to actions




PEAS

PEAS:

» Performance measure,
» Environment,

» Actuators,

» Sensors




PEAS

» automated taxi driver:

» Performance measure:
»Safety, fast, legal, comfortable trip, maximize profits

» Environment:
»Roads, other traffic, pedestrians, customers

» Actuators:
»Steering wheel, accelerator, brake, signal, horn

» Sensors:

»Cameras, sonar, speedometer, GPS, odometer, engi
sensors, keyboard, other




PEAS

Agent: automatic vacuum cleaner (Roomba)

» Performance measure: cleanness, distance, security,
efficiency, battery

» Environment: room, objects in room
» Actuators: wheels, brushes, etc.
» Sensors: dirt, cliff, bump, infrared wall, and camera

http://www.i



Environment types

Deterministic (vs. stochastic):

» Deterministic - The next state of the environment is
completely determined by the current state and the action
executed by the agent.

» Strategic - If the environment is deterministic except for the
actions of other agents

» Stochastic - The next state of the environment is not
determined solely by the current state and the action
executed by the agent.

» Non-deterministic
» Probabilistic




Environment types

Episodic (sequential):
» The agent's experience is divided into atomic "episodes”

» each episode consists of the agent perceiving and then
performing a single action, and

» the choice of action in each episode depends only on the
episode itself.




Environment types

Static (vs. dynamic):

» The environment is unchanged while an agent is
deliberating.

» The environment is semidynamic if the environment
itself does not change with the passage of time but the
agent'’s performance score does




Environment types

Discrete (vs. continuous):

» A limited number of distinct, clearly defined
percepts and actions.

» e.g. checkers/draughts v self-driven car

Single agent (vs. multi-agent):
» An agent operating by itself in an environment.




Environment types

Environment || Observable Agents Deterministic Static Discrete

8-puzzle Fully Single Deterministic Static Discrete

Chess Fully Multi Deterministic  (Semi)Static Discrete

Pocker Partially Multi Stochastic Static Discrete

Backgammon Fully Multi Stochastic Static Discrete
Car Partially Multi Stochastic Dynamic Continuous
Roomba Partially Single Stochastic Dynamic Continuous

Randomness \_ﬁanging Environments

e



Agent types

Four basic types in order of increasing generality:
» Reflex agents (simple)

» Model-based reflex agents

» Goal-based agents

» Utility-based agents

also

» Learning agents




Reflex agents

» action based on current state A
» simple / limited

» fully-observed environment only
» current percept o

[A, clean] Right
[A, dirty] Suck
[B, clean] Left
[B, dirty] Suck

e




Goal-based agents

» agents needs more information - goal

» affects actions

» considers future - what will happen if | do ...?
» knowledge represented & modified




Utility-based agents

» maximizes performance

» utility function

» this is the performance measure
» can deal with uncertainty




What are search agents?




Formulate the problem

Initial state: the state in which the agent starts

States: All states reachable from the initial state by any
sequence of actions

(State space)

Actions: possible actions available to the agent. At a state s,
Actions(s) returns the set of actions that can be executed in
state s.

(Action space)
e.g. go right or left in the maze




Examples

e States: all arrangements of O to 8 queens on the board.
e Initial state: No queen on the board

e Actions: Add a queen to any empty square

e Transition model: updated board

e Goal test: 8 queens on the board with none attacked

e




The 8-puzzle

states locations of tiles
actions move blank left, right, up, down
goal test goal state (given)

path cost 1 per move 7l 2 || 4
5 6
8 3 1

Start State

[Note: optimal solution of n-Puzzle family is NP-hard]




The 8-puzzle

234
P 567

States: Location of each of the 8 tiles in the 3x3 grid
Initial state: Any state

Actions: Move Left, Right, Up or Down

Transition model: Given a state and an action, returns re-
sulting state

e Goal test: state matches the goal state?

e Path cost: total moves, each move costs 1.

P

Ho6
712
534




search example T,

e States: In City where
City € {Los Angeles, San Francisco, Denver,...}
e Initial state: In Boston
e Actions: Go New York, etc.
e Transition model:
Results (In (Boston), Go (New York)) = In(New York)
e Goal test: In(Denver)
e Path cost: path length in kilometers

e




Space

State space: a physical configuration

Search space: an abstract configuration represented by a searc
tree or graph of possible solutions.

(A)
(B) (©)
PO ©®© O ©

Example: 8-puzzle
state space - all possible boards
search space - an abstract tree (or graph), nodes and edges




Space

Search tree: models the sequence of actions
» Root: initial state

» Branches: actions

» Nodes: results from actions. A node has: parent, children,
depth, path cost, associated state in the state space.

Expand: A function that given a node, creates all children nodes




Space regions

The search space is divided into three regions:
1. Explored (a.k.a. Closed List, Visited Set)
2. Frontier (a.k.a. Open List, the Fringe)
3. Unexplored




Space regions

The essence of search is

» moving nodes from regions (3) to (2) to (1), and

» deciding the order of such moves.

In the following we adopt the following color coding:
» green nodes are unexplored

» grey nodes are explored,

» white nodes are the frontier




Tree search example
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Tree search example
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Tree search example

L




Search strategies

» order of node expansion

» Strategies are evaluated by:
» completeness: does it always find a solution if one exists?
» time complexity: number of nodes generated

» space complexity: maximum number of nodes in memory
» optimality: does it always find a least-cost solution?




Search strategies

» Time and space complexity are measured in terms of
» b: maximum branching factor of the search tree
» d: depth of the least-cost solution
» m:. maximum depth of the state space (may be ~)

if domain knowledge - informed
else uninformed




Uninformed search strategies

» Breadth-first search

» Depth-first search

» Depth-limited search

» Iterative deepening search
» Uniform-cost search




Uninformed search strategies

1. Breadth-first search (BFS):
2. Depth-first search (DFS):

3. Depth-limited search (DLS):
4. lterative-deepening (IDS):
5. Uniform-cost search (UCS):

Expand shallowest nod
Expand deepest node

Depth first with depth li
DLS with increasing limit
Expand least cost node



Breadth-first search

» Expand shallowest unexpanded node

» Implementation:
» fringe is a FIFO queue, i.e., new successors go

at end
e "
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Breadth-first search

» Expand shallowest unexpanded node

» Implementation:

» fringe is a FIFO queue, i.e., new successors
go at end

PO
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Breadth-first search

» Expand shallowest unexpanded node

» Implementation:

» fringe is a FIFO queue, i.e., new successors go
at end




Breadth-first search

» Expand shallowest unexpanded node
» Implementation:

» fringe is a FIFO queue, i.e., new successors go

at end
(A
(B, (S

PO © © ¢
-




Properties of breadth-first search

» Complete Yes (if b is finite)
» Time 1+ b + b2+ b3 +... + bd + p(bd-1) = O(bd*)
» Space O(bd+1)

(keeps every node in mem
» Optimal Yes (if cost = 1 per step)

Space is the bigger problem (more than time)
Why use it (if exponential time & space)?
» shallow problems, NLP



Properties of breadth-first search

How bad is BFS?

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 10™ 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Time and Memory requirements for breadth-first search for a branching factor

b=10; 1 million nodes per second; 1,000 bytes per node.

P




Depth-first search

» Expand deepest unexpanded node
» Implementation:
» fringe = LIFO queue, i.e., put successors at

front "@
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Depth-first search

» Expand deepest unexpanded node

» Implementation:
» fringe = LIFO queue, i.e., put successors at front
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Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node

» Implementation:
» fringe = LIFO queue, i.e., put successors at front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at
front




Depth-first search

» Expand deepest unexpanded node
» Implementation:

» fringe = LIFO queue, i.e., put successors at front




Properties of depth-first search

» Complete No:
fails in infinite-depth spaces, spaces with loops
» if modify to avoid repeated states along path

- yes - complete in finite spaces maximum

» Time O(b™): terrible if m is much larger than d
» but if solutions are dense, may be much faster than breadth-first

» Space O(bm), i.e., linear space complexity
only store a single path (root-no
» Optima No



Properties of depth-first search

How bad is DFS?
Recall for BFS...

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds - '
8 108 2 minutes
10 107 3 hours
12 1012 13 days ctabytg
14 1014 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Depth =16.
We go down from 10 exabytes in BFS to 156 kilobytes in DFS!

e



Iterative deepening search [ =0

Limit =0 12 o
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Iterative deepening search [ =1
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Iterative deepening search [ =2




deepening search [ =3
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Properties of iterative deepening search

» Complete Yes
» Time (d+1)b% + d b? + (d-1)b? + ... + b9 = O(b9)
» Space O(bd)

» Optimal Yes, if step cost =1




»
i
80
Toro_nto

Duluth S

» 157 + 110 = 267 s>

» 81 + 80 + 90 = 251 ﬁ% ot

Go from Chicago to Sault Ste Marie. Using BFS, we would find
Chicago-Duluth-Sault Ste Marie. However, using UCS, we would
find Chicago-Pittsburgh-Toronto-Sault Ste Marie, which is actually
the shortest path!




Uniform-cost search

Complete
Yes, if solution has a finite cost
Time

O(b(€/¢)) where C is the cost of the optimal solution, ¢ is the
of an action

Space
# of nodes with g < cost of optimal solution, O(b(¢*/ ¢)
Optimal
Yes - nodes expanded in increasing order of g(n)




Summary of algorithms

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time OBHY  oplc/dy o™ O(b!) O(b%)
Space OB+ O@®lcy  Om)  O(bl) O(bd)
Optimal? Yes Yes No No Yes




What are informed search
agents?




Informed search

Use domain knowledge!
» Are we getting close to the goal?

» Use a heuristic function that estimates how close a state is t
the goal

» A heuristic does NOT have to be perfect!
» Example of strategies:

1. Greedy best-first search

2. A* search

3. IDA* (alternative type of A* search)




Romania with step costs in km
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Greedy best-first search

» Evaluation function f(n) = h(n) (heuristic)

» = estimate of cost from n to goal
» e.g., hgp(n) = straight-line distance from n to Bucharest

» Greedy best-first search expands the node that appears to be
closest to goal

» Example: there are 3 possible cities, which city is the closest, in
km, to the goal (destination city)




Greedy best-first search example

366




Greedy best-first search example
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Greedy best-first search example




Greedy best-first search example
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Properties of greedy best-first search

» Complete? No - can get stuck in loops

» Time? O(b™), but a good heuristic can give dramatic
improvement

» Space? O(b™) -- keeps all nodes in memory
» Optimal? No




A" search

Minimize the total estimated solution cost

Combines:
» g(n): cost to reach node n
» h(n): cost to get from n to the goal
» f(n) = g(n)+h(n)

» f(n) is the estimated cost of the cheapest solution through n




A" search

» |Idea: avoid expanding paths that are already expensive
» Evaluation function f(n) = ¢(n) + h(n)

calculate total cost = cost so far + estimated cost to goal




A" search example

366=0+366




A" search example

e -,

393=140+253 447=118+329




A" search example

H H47=118+329
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A" search example
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A" search example
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A" search example

-

447=118+329
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A" search

A good heuristic can be powerful.

Only if it is of a ‘““‘good quality”

An admissible heuristic never
overestimates the cost to reach the goal,
i.e., it is optimistic




A" search

7 > + 1 z

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

e [ he solution is 26 steps long.

e h1(n) = number of misplaced tiles

e hr(n) =total Manhattan distance (sum of the horizontal and
vertical distances).

o hl(n) = 8

e Tiles 1 to 8 in the start state gives: h, =3+ 14+24+2+2+
34+3+2 =18 which does not overestimate the true solution.

e




A" search

» Complete? Yes

» Time? exponential
» Space? keeps every node in memory - problem

» Optimal? Yes!
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Games &
Satisfying Constraint Problems




Adversarial Search

o Adversarial search problems = games

e They occur in multi-agent competitive
environments

e There is an opponent we can’t control planning
again us!




Adversarial Search

« Game vs. search:
» optimal solution is not a sequence of actions
» but a strategy (policy)
» |If opponent does a, agent does b, else
» if opponent does ¢, agent does d, etc.
» Tedious and fragile if hard-coded (i.e., rules)
We use 2 ingredients:
» search problems & heuristic evaluation




perfect information

imperfect information

Type of Games

non-deterministi
stochastic game

deterministic chance

chess, checkers, backgammon
go, othello monopoly

battleships, bridge, poker, scrabble
blind tictactoe nuclear war



Adversarial Search

e [ wo players: Max and Min
e Players alternate turns

e Max moves first

e Max maximizes results

e Min minimizes the result

e Compute each node’'s minimax value's the best achievable util-
ity against an optimal adversary

e Minimax value = best achievable payoff against best play

-




Game tree

2-player
Max & Min deterministic
take turns

MAX (X)

X X Tx
MIN (O)

X[o x| ol x|
MAX (X) o

x[o/x| [x[o X0
MIN (O) X X

xlox| [x[olx] [xTo[x
TERMINAL | [0 X| [O|O[X X

o X/ Xx|o| [X[o[o

Utility 1 a +1




Minimax

» Perfect play for deterministic games

» |ldea: choose the move to position with highest minimax
value

» = best achievable payoff against best play

» E.g., 2-ply game: WA A, 3
A1 2

MIN \/ \/ 2

A AR AN Ay Al AN

:




a-B pruning example

MK 23
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a-B pruning example

Il A
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a-B pruning example
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a-B pruning example

AKX




a-B pruning example

>8 3

hl A




calculations

Minimax(root) = max(min(3,12,8),min(2, X,Y ), min(14,5,2))
=yl 3, mers(2,X;,Y ) 2)
= max(3.7,2) where Z =min(2,X,Y) <2

=3
Minimax decisions are independent of the values of X and Y.

-




Stochastic Games

» Includes chance - a random element

» e.g., throwing a die

» Include chance nodes.

Ptkfgs [Public domain], via Wikimedia Commons
Backgammon:
» old board game combining skills and chance.

» The goal is that each player tries to move all of his pieces off
the board before his opponent does.




Chance Games

TERMINAL 2 -1 1 -1 1

Partial game tree for Backgammon.

P




Chance Games

Example with coin-flipping:

chanceHor T =
40ré6

min = 4

0.5

0.5

min = 6

max chooses
probability 5 or 1.5,
max chooses left tree

chanceHor T =

1o0r2

0.5 0.5

min = 2



CSP Definition

» A constraint satisfaction problem consists of three elements:
- A set of variables, X = {X1,X2, - - -Xn}
- A set of domains for each variable: D = {D1,D2, - - -Dn}

- A set of constraints C that specify allowable combinations of values.

» Solving the CSP: finding the assignment(s) that satisfy all constraints.
» Concepts: problem formalization, backtracking search, arc consistency, etc.

» We call a solution, a consistent assignment.




Example: Map-Coloring

» Variables WA, NT, Q, NSW, V, SA, T
» Domains D; = {red,green,blue}

» Constraints: adjacent regions must have
different colors

e.g., WA = NT, or (WA,NT) in
{(red,green),(red,blue), (green red),
(green,blue), (blue,red), (blue green)}




Example: Map-Coloring

blue, T = green




Constraint graph

» Binary CSP: each constraint relates two variables
» Constraint graph: nodes are variables, arcs are constraints

Morthern
Territory

Westarn Queansland

Australia

South
Australia

New South Wales

Victoria

TR

(W
Q,
/




Backtracking example

g+




Backtracking example




Backtracking example




Backtracking example




Most constrained variable

» Most constrained variable:

choose the variable with the fewest legal values
» a.k.a. minimum remaining values (MRV) heuristic
pick the hardest

\ R



Least constraining value

» Given a variable, choose the least constraining value:

» the one that rules out the fewest values in the
remaining variables

» Combining these heuristics makes 1000 queens feasible
pick the ones that are likely to work

™ L. Allows 1 value for SA

(Y _ Allows D values for SA




Forward checking

» ldea:

» Keep track of remaining legal values for unassigned
variables

» Terminate search when any variable has no legal values

=+

WA NT Q NSW v SA T
BT ERETCTENTEINTE ...l...l...l

e




WA

NT

Forward checking

NSW

Vv




o

WA

Forward checking

NT

Q

NSW

4%

Vv




Forward checking

» Now Southern Australia has no options remaining -
therefore this is not a possible solution

#4042




Constraint propagation

» Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection
for all failures:

» NT and SA cannot both be blue!

» Constraint propagation repeatedly enforces constraints
locally

WA NT Q NSW
mENE

[
L H B




Arc consistency

» Simplest form of propagation makes each arc consistent
» X =Y is consistent iff
for every value x of X there is some allowed vy

WA NT Q NSW v T
1 Hjihow|m EjErNE| H|ENE

\é/’
-




Arc consistency

» Simplest form of propagation makes each arc consistent
» X =Y is consistent iff

for every value x of X there is some allowed y




Arc consistency

» Simplest form of propagation makes each arc consistent
» X =Y is consistent iff

for every value x of X there is some allowed y

» If X loses a value, neighbors of X need to be rechecked




Arc consistency

» Simplest form of propagation makes each arc consistent
» X =Y is consistent iff

for every value x of X there is some allowed y

» If X loses a value, neighbors of X need to be rechecked
» Arc consistency detects failure earlier than forward checking
» Can be run as a preprocessor or after each assignment

WA NT




Complexity

Example:
Assume n = 80, d = 2.
e Assume we can decompose into 4 subproblems with ¢ = 20.
e Assume processing at 10 million nodes per second.
e Without decomposition of the problem we need:
280 = 1.2*10% - take 3.83 million years!
e With decomposition of the problem we need:
4 * 220 = 4,2*10% reduced to 0.4 seconds

e







What is
Artificial Intelligence now?

we need to understand
Natural Language Processing




Al journey

When we think of Artificial Intelligence we think of ChatGPT
(Large Language Models called LLMs)

but, where did they come from?




Al & NLP

what was Al/NLP research like 25 years ago?




Why? What is NLP?

Natural Language Processing (NLP) deals with the
research of how to apply computational techniques
on human language

» Al subfield

» ‘demanding’ area’ for research

» results notoriously difficult

» “can’t teach it to students as they would fail the cours




NATURAL LANGUAGE PROCESSING

Text Processing Speech Processing Other NLP areas
» Parsing: Dividing text into meaningful units, like » Speech Recognition: Converting spoken
words or phrases, and structuring them to language to text
understand grammar and syntax + Speech Synthesis: Converting text back to * Information Retrieval
» Semantic Analysis: Determining the meaning of human-sounding speech (TTS) * Information Extraction
words in context (e.g. sentiment analysis) * Intent Recognition: Understanding the * Machine Translation
» Named Entity Recognition (NER): Identifying proper purpose or request in user queries * Question Answering Systems
nouns like names of people, places, dates + Dialog Management: Structuring back-and- » Co-reference Resolution
» Text Generation: Creating new text based on input, forth conversation flows in a logical way.

such as summaries or articles (e.g., GPT models)




Research Lab - research included

» information overload

» overload of information online - information extraction
» pattern recognition

» text-based (e.g. finding patterns in text)

» image-based (e.g. snake skin)

» anti-spam & content-based filtering

» spam was a problem

> inappropriate email (e.g. pornography) According to a study by Websense in the early 2000s, up to 30% of workplace
internet use was unrelated to work tasks, with some portion of this time spent on
> SpeeCh adult sites

\
> SpeeCh markup language (XML) 2005 American Management Association survey reported that 76% of companies

> Text-to-Speech systems (SAPI) monitored workers' website visits
» translation to sign language

» other research included - NLP (WSD),Thai NLP, Computer Visio
gloves)

VR




and Language?

it’s difficult




NLP / Al 10 years ago

OO0 il
:E] [E] @ http:/ /www.aljazeera.net/NR/exeres/8FDS4E7F-56C5-49A0-B60A-89A67426F383.htm  ~ Q- al jazeera [5)
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What is a conversation agent? T R
HAL 9000 (from 2001: A Space Odyssey) 5 - ,

BIFEST]
| adlaa

Dave: Open the pod bay doors, Hal. : .__M_ A -‘ e i
HAL: I’m sorry Dave, I’m afraid | can’t do that

Virtual assistants:
 Siri, Apple .
» Cortana, Microsoft  poivanbiont
M, Facebook ' ; o b o
. Al exa, Amazon | s a e
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| made her duck

cooked [animal-duck] for her to eat

cooked [animal-duck] belonging to her
created the [plastic-duck] she owns

caused her to quickly lower her head or body
waved my magic wand and turned her into a [animal-

g AN W N =




Probabilistic Language Models

assign a probability to a sentence

» Machine Translation:
» P(high winds tonight) > P(large winds tonight)

» Spelling Correction

» The office is about fifteen minuets from my house

» P(about fifteen minutes from) > P(about fifteen minuets from)

» Speech Recognition

» P(l saw a van) >> P(eyes awe of an)




Probabilistic Language Models

probability of an upcoming word:

P(WS | W1)W2)W3)W4)
compute the probability of a sentence or sequence of words:
P(W) = P(W{,W,,W3,W/,Ws...W,)




Chain Rule of Probability

P(“water is so transparent”) =
P(is|water) x P(so|water is) x P(transparent |water is so)
we could count and divide? Too many possible sentences

Markov Assumption
P(the | its water is so transparent that) similar to
P(the | transparent that)




How many?

2 words = bigram
3 words = trigram
4 words = 4-gram
5 words = 5-gram
called n-grams

but we have long distance dependencies




Beam Search Decoding ...— . o

back w=——  EOS
|,m / \

EOS
Yes

EOS /’
4 4 here/
Input \ FFA 4there /home

——

/

Thanks

» English 500,000+ word dictionaries §:
» probability of next word - too \

computationally expensive oS §: iy

» use beam search

P(WS | W11W2)W3/W4)

finite set finite set finite set finite set finite set

of possible ‘ of possible ‘ of possible ‘ of possible ‘ of possible

terms terms terms terms terms




but it has all changed!




the neural network
revolution




Neural Networks

» We have known about neural
networks for a long time

» |t is said the first Artificial Neural

Networks were developed in the
1940s

» 1983-1985 Geoffrey Hinton used
tools from statistical physics to
create the Boltzmann machine

Even Recurrent neural networks
(RNN) (used for NMT) was written
about in 1997 [1]

But now we have
data and the
computing pow

[1] Castano, Asuncion; Casacuberta, Francisco (1997).
translation. 5th European Confere
odes, Greece. pp.



Thai-English Machine Translation

is a good example of what has happened to Al and NLP




the story

Would Google Translation stay number one?

Who could develop the first successful NMT system?

TPUs and how long to converge

MT = Neural Machine Translation
PU = Tensor Processing Unit



the facts

Google developed the first successful NMT system

in 2016 Google launched its NMT-based Google Translate for several language pa

Google did leverage extensive computational resources, including GPUs initially,
later integrated its proprietary TPUs to speed up inference and training times

However, there isn’t strong evidence that the initial NMT system specifically took th
months to converge using TPUs.

Research in Canada: The University of Montreal, led by Yoshua Bengio and contributio
from Kyunghyun Cho and others, was among the pioneering teams in neural machi
translation.

They helped develop early NMT models and contributed to the broader researc
Google later built upon.



the (small) Al world




Ilya Sutskever

[PDF] Seguence to Sequence Leamning with Neural Networks
| Sutskever - arXiv preprint arkiv: 14093215, 2014 - jeremy-sul_github.io

Sequence to Sequence Learning with Neural Networks Sequence to Sequence Learning
with Neural Networks ...

v Save UY Cite Cited by 27509 Related articles %

Showing the best resulf for this search. See all results
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Ilya Sutskever

In 2012, Sutskever spent about two months as a postdoc with Andrew Ng at Stanford University. He t

to the University of Toronto and joined Hinton's new research company DNNResearch, a spinoff of Hi
research group.

. . Cen? Google Brain |
In 2013, Google acquired DNNResearch and hired ® —
Sutskever as a research scientist at Google Brain. o |
At Google Brain, Sutskever worked with Oriol Vinyals and ¢ G
Quoc Viet Le to create the sequence-to-sequence O&-O AlphaGO
learning algorithm, and worked on TensorFlow.

He is also one of the AlphaGo paper's many co-authors.

@ @ OpenAl

At the end of 2015, Sutskever left Google .
cofounder and chief scientist of the ne
organization OpenAl.

Sutskever is considered to have pla
development of ChatGPT.




'

Machine Learning

the ai world

by Andrew Ng

early 2010’s
» studied machine learning online with AndrewNg

» studied neural networks online with Geoffrey Hin
now

» retrieval augmented generation (RAG)
» Al safety and ethical considerations Neural Networks for Machine Learning

@ Instructor: Geoffrey Hinton




Progress




progress

iRobot Roomba (2002) The first commercially successful robot vac
https://vacuumwars.com/history-of-the-robot-vacuum-cleaner/

robot vacuum cleaners
22 years ago - not very good
22 years later - not very good




progress

» speech recognition (NLP in personal assistant)
» except Scottish accent
» but we still use keyboards & mice

» pattern recognition

» object recognition - nearly at 100% world objects




early 2010s

The adoption of deep
learning

techniques, led to

significant advancements
in NLP tasks such as
machine translation,
sentiment analysis, and
speech recognition.

Deep learning models
outperformed traditional
methods, marking a shift
towards more complex
and capable Al systems

ARTIFICIAL INTELLIGENCE

lete 2010s

The introduction of the

transformer (2017)

allowed for more
efficient processing of
language data.

Leading to breakthroughs
in translation and text
generation tasks.

Transformers became the
backbone for subsequent
large language models
(LLMs).

2020s

The emergence of
LLMs transformed
user interaction
with Al.

The surge in generative
Al applications has led
to new creative
possibilities in content
generation.

This boom has also
raised ethical concerns
regarding
misinformation and
copyright issues,
prompting discussions
about responsible Al
use and regulation

The widespread
integration of Al

technologies into
consumer products
and services—such as
virtual assistants,
customer service bots,
and content
recommendation
systems—has made Al
a ubiquitous part of
daily life.

This has increased
public awareness and
demand for further
advancements and
improvements.




S———

analyzed bilingual
text corpora

identify patterns and
rules for translation
breaks down
sentences
translating these
units

based on
probabilities

from training data
dependent on the
training data quality
and quantity

MACHINE TRANSLATION

Neural

deep learning
models

used vast amounts
of data

handling long-
range
dependencies
more natural-
sounding results
improving fluency
and coherence

Altertion
focus on specific
parts of the input
when generating
each word output
improving accuracy
for longer sentences
has led to substantial
improvements in
translation quality,
particularly for
complex sentence
structures

Transfomers

replaced recurrent
neural networks
with self-attention
mechanisms allowing
for parallelization
significantly
increasing efficiency
Transformers have
excelled in handling
diverse languages
and contexts,
making them the
current state-of-the-
art.




LANGUAGE MODELS

Statistical Neural Attention Transfomers

+ Statistical Language « Neural Language » allowed models to « revolutionized
Models operate on Models created focus on relevant language modelling
probabilistic better language parts of the input » enabled the training
principles, representation sequence of much larger
analyzing large » models could * when generating models (LLMs)
corpora of text capture more outputs. - with billions of
learn the likelihood of complex patterns in * improved how models  parameters,
word sequences using data. handled context. . leading to
n-grams. « They improved * enhanced unprecedented
struggle with long- fluency and performance in tasks improvements in
range dependencies contextual requiring various NLP tasks
resulting in less understanding understanding of « such as translation,
coherent and » but still had longer contexts summarization, and
accurate outputs scalability and * leading to more question-answering

language diversity coherent outputs
problems.




In ‘attention-based’ systems there is an attention mechanism between the encoder
and decoder that allows the decoder to give greater importance to the nodes that
have the highest scores in a weighting system. For example, if a word with the same
meaning in a direct translation was placed much earlier in a sentence, then this could
be given a higher weight thus giving it greater attention. Some issues are not solved

R . . . . using attention such as the inability to process input in parallel. If each word can be
A review D‘f Tha|—Eng||5h maChInE tra nSIatlﬂ'n processed at the same time, such as with Convolutional Neural Networks (CNN),
then parallelization could reduce the time overhead. The problem of dependencies
when translating sentences still remain, so a combination of CNNs and attention was
Séamus L}Fﬂr‘l 5‘ created to form the Transformer model (Vaswani et al. 2017). Transformers allow
the decoder to focus on the relevant parts of the input sentence but also use a form
of attention called self-attention that uses query, key and value vectors for each word
Received: 11 January 2019 / Accepted: 20 July 2020 / Published online: 14 August 2020 to create scores that measure the relationship between the word and the other words
© Springer Nature B.V. 2020 in the sentence. Finally, the decoder chooses from a large selection of target-lan-
guage words using a ‘softmax’ function. Systems can use a combination of words
and sub-words to significantly reduce the problem caused by the large amount of
output options.
(411 ol =g

| It I i

softmax

dattention / transformer

17 months ]
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Fig.5 A neural machine translation (NMT) system




Can General-Purpose Large Language Models Generalize to English-Thai
Machine Translation?
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Sentiment Analysis

Recurrent Neural Networks (RNNs) and Ti
sentiment analysis evolve from simple word
nuanced opinions in text.

Models like BERT and RoBERTa capture conte
distinguishing subtle sentiment in complex re

Question Answering (QA)

Neural networks have enabled models to rea
N e u ral N etWO rkS answers to questions with high accuracy.

BERT, GPT, and other transformer-based mode

leveraging their ability to understand and gene
How have neural networks specific questions.

improved NLP?

Text Summarization

Neural models generate concise summaries by identi
information from larger documents.
Sequence-to-sequence (seq2seq) models and attentic
are particularly effective, enabling both extractive ang
summarization approaches

Chatbots and Conversational Agents

Neural networks are behind more natural and
agents.

Dialog systems like those in GPT and Cha
manage context over long interactions, i
responses in real-time conversations.




Named Entity Recognition (NER)

Neural networks have improved the accurac
organizations, and other entities in text,
Bi-directional LSTM-CRF models, often co
embeddings, have set new benchmarks in ex
accurately.

Text Generation and Completion

Models like GPT-3 can generate realistic text
N e u ral N etWO rkS significant strides in applications like automate

generation, and code completion.

These models understand context well enough t¢
How have neural networks text in a way that appears human-written.

improved NLP?

Speech Recognition and Synthesis

Neural networks, particularly convolutiona
and transformers, have improved both tra
natural-sounding speech synthesis.

critical for virtual assistants and accessibility tools

Grammar and Style Correction

Models like T5 and GPT can detect and sugges
grammar and style errors, often'with humar
These models help in developing tools like
Editor, making grammar checks context




so, what changed?

from corpus-based research to Neural Networks
1. vast amounts of text (the internet)

2. more computational power

Neural Networks can converge
so advanced machine learning
without human input (features & weights)
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Thank you!

any questions?




